Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Anal Bioanal Chem ; 416(8): 1923-1933, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326664

RESUMEN

Inflammation is a complex process that accompanies many pathologies. Actually, dysregulation of the inflammatory process is behind many autoimmune diseases. Thus, treatment of such pathologies may benefit from in-depth knowledge of the metabolic changes associated with inflammation. Here, we developed a strategy to characterize the lipid fingerprint of inflammation in a mouse model of spinal cord injury. Using lipid imaging mass spectrometry (LIMS), we scanned spinal cord sections from nine animals injected with lysophosphatidylcholine, a chemical model of demyelination. The lesions were demonstrated to be highly heterogeneous, and therefore, comparison with immunofluorescence experiments carried out in the same section scanned by LIMS was required to accurately identify the morphology of the lesion. Following this protocol, three main areas were defined: the lesion core, the peri-lesion, which is the front of the lesion and is rich in infiltrating cells, and the uninvolved tissue. Segmentation of the LIMS experiments allowed us to isolate the lipid fingerprint of each area in a precise way, as demonstrated by the analysis using classification models. A clear difference in lipid signature was observed between the lesion front and the epicentre, where the damage was maximized. This study is a first step to unravel the changes in the lipidome associated with inflammation in the context of diverse pathologies, such as multiple sclerosis.


Asunto(s)
Lipidómica , Mielitis , Ratones , Animales , Inmunohistoquímica , Inflamación , Espectrometría de Masas , Lípidos
2.
J Cereb Blood Flow Metab ; 43(8): 1301-1316, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36916034

RESUMEN

Nicotinic acetylcholine α7 receptors (α7 nAChRs) have a well-known modulator effect in neuroinflammation. Yet, the therapeutical effect of α7 nAChRs activation after stroke has been scarcely evaluated to date. The role of α7 nAChRs activation with PHA 568487 on inflammation after brain ischemia was assessed with positron emission tomography (PET) using [18F]DPA-714 and [18F]BR-351 radiotracers after transient middle cerebral artery occlusion (MCAO) in rats. The assessment of brain oedema, blood brain barrier (BBB) disruption and neurofunctional progression after treatment was evaluated with T2 weighted and dynamic contrast-enhanced magnetic resonance imaging (T2 W and DCE-MRI) and neurological evaluation. The activation of α7 nAChRs resulted in a decrease of ischemic lesion, midline displacement and cell neurodegeneration from days 3 to 7 after ischemia. Besides, the treatment with PHA 568487 improved the neurofunctional outcome. Treated ischemic rats showed a significant [18F]DPA-714-PET uptake reduction at day 7 together with a decrease of activated microglia/infiltrated macrophages. Likewise, the activation of α7 receptors displayed an increase of [18F]BR-351-PET signal in ischemic cortical regions, which resulted from the overactivation of MMP-2. Finally, the treatment with PHA 568487 showed a protective effect on BBB disruption and blood brain vessel integrity after cerebral ischemia.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Receptores Nicotínicos , Ratas , Animales , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/uso terapéutico , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/tratamiento farmacológico
3.
Autophagy ; 19(7): 1952-1981, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36622892

RESUMEN

Microglial phagocytosis of apoptotic debris prevents buildup damage of neighbor neurons and inflammatory responses. Whereas microglia are very competent phagocytes under physiological conditions, we report their dysfunction in mouse and preclinical monkey models of stroke (macaques and marmosets) by transient occlusion of the medial cerebral artery (tMCAo). By analyzing recently published bulk and single cell RNA sequencing databases, we show that the phagocytosis dysfunction was not explained by transcriptional changes. In contrast, we demonstrate that the impairment of both engulfment and degradation was related to energy depletion triggered by oxygen and nutrient deprivation (OND), which led to reduced process motility, lysosomal exhaustion, and the induction of a protective macroautophagy/autophagy response in microglia. Basal autophagy, in charge of removing and recycling intracellular elements, was critical to maintain microglial physiology, including survival and phagocytosis, as we determined both in vivo and in vitro using pharmacological and transgenic approaches. Notably, the autophagy inducer rapamycin partially prevented the phagocytosis impairment induced by tMCAo in vivo but not by OND in vitro, where it even had a detrimental effect on microglia, suggesting that modulating microglial autophagy to optimal levels may be a hard to achieve goal. Nonetheless, our results show that pharmacological interventions, acting directly on microglia or indirectly on the brain environment, have the potential to recover phagocytosis efficiency in the diseased brain. We propose that phagocytosis is a therapeutic target yet to be explored in stroke and other brain disorders and provide evidence that it can be modulated in vivo using rapamycin.Abbreviations: AIF1/IBA1: allograft inflammatory factor 1; AMBRA1: autophagy/beclin 1 regulator 1; ATG4B: autophagy related 4B, cysteine peptidase; ATP: adenosine triphosphate; BECN1: beclin 1, autophagy related; CASP3: caspase 3; CBF: cerebral blood flow; CCA: common carotid artery; CCR2: chemokine (C-C motif) receptor 2; CIR: cranial irradiation; Csf1r/v-fms: colony stimulating factor 1 receptor; CX3CR1: chemokine (C-X3-C motif) receptor 1; DAPI: 4',6-diamidino-2-phenylindole; DG: dentate gyrus; GO: Gene Ontology; HBSS: Hanks' balanced salt solution; HI: hypoxia-ischemia; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MCA: medial cerebral artery; MTOR: mechanistic target of rapamycin kinase; OND: oxygen and nutrient deprivation; Ph/A coupling: phagocytosis-apoptosis coupling; Ph capacity: phagocytic capacity; Ph index: phagocytic index; SQSTM1: sequestosome 1; RNA-Seq: RNA sequencing; TEM: transmission electron microscopy; tMCAo: transient medial cerebral artery occlusion; ULK1: unc-51 like kinase 1.


Asunto(s)
Autofagia , Accidente Cerebrovascular , Animales , Ratones , Autofagia/fisiología , Microglía/metabolismo , Beclina-1/metabolismo , Fagocitosis/genética , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo , Oxígeno/farmacología , Sirolimus/farmacología
4.
Cell Death Dis ; 14(1): 16, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635255

RESUMEN

In multiple sclerosis and the experimental autoimmune encephalomyelitis (EAE) model, both resident microglia and infiltrating macrophages contribute to demyelination as well as spontaneous remyelination. Nevertheless, the specific roles of microglia versus macrophages are unknown. We investigated the influence of microglia in EAE using the colony stimulating factor 1 receptor (CSF-1R) inhibitor, PLX5622, to deplete microglial population and Ccr2RFP/+ fmsEGFP/+ mice, to distinguish blood-derived macrophages from microglia. PLX5622 treatment depleted microglia and meningeal macrophages, and provoked a massive infiltration of CCR2+ macrophages into demyelinating lesions and spinal cord parenchyma, albeit it did not alter EAE chronic phase. In contrast, microglia and meningeal macrophages depletion reduced the expression of major histocompatibility complex II and CD80 co-stimulatory molecule in dendritic cells, macrophages and microglia. In addition, it diminished T cell reactivation and proliferation in the spinal cord parenchyma, inducing a significant delay in EAE onset. Altogether, these data point to a specific role of CNS microglia and meningeal macrophages in antigen presentation and T cell reactivation at initial stages of EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Microglía/metabolismo , Macrófagos/metabolismo , Esclerosis Múltiple/metabolismo , Médula Espinal/patología , Ratones Endogámicos C57BL
5.
Front Cell Dev Biol ; 10: 841548, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372341

RESUMEN

Abnormalities in myelination are associated to behavioral and cognitive dysfunction in neurodevelopmental psychiatric disorders. Thus, therapies to promote or accelerate myelination could potentially ameliorate symptoms in autism. Clemastine, a histamine H1 antagonist with anticholinergic properties against muscarinic M1 receptor, is the most promising drug with promyelinating properties. Clemastine penetrates the blood brain barrier efficiently and promotes remyelination in different animal models of neurodegeneration including multiple sclerosis, ischemia and Alzheimer's disease. However, its role in myelination during development is unknown. We showed that clemastine treatment during development increased oligodendrocyte differentiation in both white and gray matter. However, despite the increase in the number of oligodendrocytes, conduction velocity of myelinated fibers of corpus callosum decreased in clemastine treated mice. Confocal and electron microscopy showed a reduction in the number of myelinated axons and nodes of Ranvier and a reduction of myelin thickness in corpus callosum. To understand the mechanisms leading to myelin formation impairment in the presence of an excess of myelinating oligodendrocytes, we focused on microglial cells that also express muscarinic M1 receptors. Importantly, the population of CD11c+ microglia cells, necessary for myelination, as well as the levels of insulin growth factor-1 decrease in clemastine-treated mice. Altogether, these data suggest that clemastine impact on myelin development is more complex than previously thought and could be dependent on microglia-oligodendrocyte crosstalk. Further studies are needed to clarify the role of microglia cells on developmental myelination.

6.
Immunohorizons ; 5(8): 615-626, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376483

RESUMEN

Microglia act as sensors of injury in the brain, favoring its homeostasis. Their activation and polarization toward a proinflammatory phenotype are associated with injury and disease. These processes are linked to a metabolic reprogramming of the cells, characterized by high rates of glycolysis and suppressed oxidative phosphorylation. This metabolic switch can be reproduced in vitro by microglial stimulation with LPS plus IFN-γ. To understand the mechanisms regulating mitochondrial respiration abolishment, we examined potential alterations in mitochondrial features during this switch using rat primary microglia. Cells did not show any change in mitochondrial membrane potential, suggesting a limited impact in the mitochondrial viability. We provide evidence that reverse operation of F0F1-ATP synthase contributes to mitochondrial membrane potential. In addition, we studied the possible implication of mitochondrial dynamics in the metabolic switch using the mitochondrial division inhibitor-1 (Mdivi-1), which blocks dynamin-related protein 1 (Drp1)-dependent mitochondrial fission. Mdivi-1 significantly reduced the expression of proinflammatory markers in LPS plus IFN-γ-treated microglia. However, this inhibition did not lead to a recovery of the oxidative phosphorylation ablation by LPS plus IFN-γ or to a microglia repolarization. Altogether, these results suggest that Drp1-dependent mitochondrial fission, although potentially involved in microglial activation, does not play an essential role in metabolic reprogramming and repolarization of microglia.


Asunto(s)
Potencial de la Membrana Mitocondrial/fisiología , Microglía/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Células Cultivadas , Dinaminas/metabolismo , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microglía/citología , Microglía/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , ATPasas de Translocación de Protón/metabolismo , Quinazolinonas/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo
7.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572157

RESUMEN

Platelet-rich plasma (PRP) is a biologic therapy that promotes healing responses across multiple medical fields, including the central nervous system (CNS). The efficacy of this therapy depends on several factors such as the donor's health status and age. This work aims to prove the effect of PRP on cellular models of the CNS, considering the differences between PRP from young and elderly donors. Two different PRP pools were prepared from donors 65‒85 and 20‒25 years old. The cellular and molecular composition of both PRPs were analyzed. Subsequently, the cellular response was evaluated in CNS in vitro models, studying proliferation, neurogenesis, synaptogenesis, and inflammation. While no differences in the cellular composition of PRPs were found, the molecular composition of the Young PRP showed lower levels of inflammatory molecules such as CCL-11, as well as the presence of other factors not found in Aged PRP (GDF-11). Although both PRPs had effects in terms of reducing neural progenitor cell apoptosis, stabilizing neuronal synapses, and decreasing inflammation in the microglia, the effect of the Young PRP was more pronounced. In conclusion, the molecular composition of the PRP, conditioned by the age of the donors, affects the magnitude of the biological response.


Asunto(s)
Corteza Cerebral/inmunología , Mediadores de Inflamación/metabolismo , Microglía/inmunología , Plasma Rico en Plaquetas/inmunología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento/inmunología , Animales , Apoptosis/inmunología , Línea Celular Tumoral , Proliferación Celular , Corteza Cerebral/citología , Quimiocina CCL11/metabolismo , Femenino , Humanos , Masculino , Ratones , Microglía/citología , Células-Madre Neurales/inmunología , Neurogénesis/inmunología , Neuronas/inmunología , Plasma Rico en Plaquetas/citología , Plasma Rico en Plaquetas/metabolismo , Cultivo Primario de Células , Ratas , Sinapsis/inmunología , Adulto Joven
8.
Theranostics ; 11(1): 410-425, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391483

RESUMEN

Adenosine A1 receptors (A1ARs) are promising imaging biomarkers and targets for the treatment of stroke. Nevertheless, the role of A1ARs on ischemic damage and its subsequent neuroinflammatory response has been scarcely explored so far. Methods: In this study, the expression of A1ARs after transient middle cerebral artery occlusion (MCAO) was evaluated by positron emission tomography (PET) with [18F]CPFPX and immunohistochemistry (IHC). In addition, the role of A1ARs on stroke inflammation using pharmacological modulation was assessed with magnetic resonance imaging (MRI), PET imaging with [18F]DPA-714 (TSPO) and [18F]FLT (cellular proliferation), as well as IHC and neurofunctional studies. Results: In the ischemic territory, [18F]CPFPX signal and IHC showed the overexpression of A1ARs in microglia and infiltrated leukocytes after cerebral ischemia. Ischemic rats treated with the A1AR agonist ENBA showed a significant decrease in both [18F]DPA-714 and [18F]FLT signal intensities at day 7 after cerebral ischemia, a feature that was confirmed by IHC results. Besides, the activation of A1ARs promoted the reduction of the brain lesion, as measured with T2W-MRI, and the improvement of neurological outcome including motor, sensory and reflex responses. These results show for the first time the in vivo PET imaging of A1ARs expression after cerebral ischemia in rats and the application of [18F]FLT to evaluate glial proliferation in response to treatment. Conclusion: Notably, these data provide evidence for A1ARs playing a key role in the control of both the activation of resident glia and the de novo proliferation of microglia and macrophages after experimental stroke in rats.


Asunto(s)
Encéfalo/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Inflamación/metabolismo , Receptor de Adenosina A1/metabolismo , Antagonistas del Receptor de Adenosina A1/farmacología , Animales , Encéfalo/diagnóstico por imagen , Didesoxinucleósidos , Inmunohistoquímica , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/fisiopatología , Inflamación/diagnóstico por imagen , Inflamación/fisiopatología , Leucocitos/metabolismo , Activación de Macrófagos/efectos de los fármacos , Imagen por Resonancia Magnética , Microglía/metabolismo , Imagen Multimodal , Tomografía de Emisión de Positrones , Pirazoles , Pirimidinas , Radiofármacos , Ratas , Xantinas/farmacología
9.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756482

RESUMEN

The release and extracellular action of ATP are a widespread mechanism for cell-to-cell communication in living organisms through activation of P2X and P2Y receptors expressed at the cell surface of most tissues, including the nervous system. Among ionototropic receptors, P2X4 receptors have emerged in the last decade as a potential target for CNS disorders such as epilepsy, ischemia, chronic pain, anxiety, multiple sclerosis and neurodegenerative diseases. However, the role of P2X4 receptor in each pathology ranges from beneficial to detrimental, although the mechanisms are still mostly unknown. P2X4 is expressed at low levels in CNS cells including neurons and glial cells. In normal conditions, P2X4 activation contributes to synaptic transmission and synaptic plasticity. Importantly, one of the genes present in the transcriptional program of myeloid cell activation is P2X4. Microglial P2X4 upregulation, the P2X4+ state of microglia, seems to be common in most acute and chronic neurodegenerative diseases associated with inflammation. In this review, we summarize knowledge about the role of P2X4 receptors in the CNS physiology and discuss potential pitfalls and open questions about the therapeutic potential of blocking or potentiation of P2X4 for different pathologies.


Asunto(s)
Adenosina Trifosfato/genética , Enfermedades del Sistema Nervioso Central/genética , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2Y/genética , Comunicación Celular/genética , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Enfermedades del Sistema Nervioso Central/metabolismo , Enfermedades del Sistema Nervioso Central/patología , Humanos , Microglía/patología , Plasticidad Neuronal/genética
10.
Front Mol Neurosci ; 13: 92, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714144

RESUMEN

Shortage of oxygen and nutrients in the brain induces the release of glutamate and ATP that can cause excitotoxicity and contribute to neuronal and glial damage. Our understanding of the mechanisms of ATP release and toxicity in cerebrovascular diseases is incomplete. This review aims at summarizing current knowledge about the participation of key elements in the ATP-mediated deleterious effects in these pathologies. This includes pannexin-1 hemichannels, calcium homeostasis modulator-1 (CALHM1), purinergic P2X7 receptors, and other intermediaries of CNS injury downstream of ATP release. Available data together with recent pharmacological developments in purinergic signaling may constitute a new opportunity to translate preclinical findings into more effective therapies in cerebrovascular diseases.

11.
Front Med (Lausanne) ; 7: 238, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582732

RESUMEN

Maintaining the ability to walk is one of the significant challenges in people with multiple sclerosis (MS) for keeping a good quality of life as the disease and the aging process progresses. Overground robotic (OR) wearable exoskeletons are promising tools for gait rehabilitation, but currently there is no evidence of their clinical effects on patients with MS. The present study aims to determine the effects of an OR intervention in people with MS and moderate to severe walking disabilities and ascertain if benefits are maintained over a follow-up period of 3 months. This randomized controlled trial will include 36 participants with MS. Inclusion criteria are: older than 18 years, definitive diagnosis of MS, 4.5-7 points on the EDSS (Expanded Disability Status Scale), and needing one or two canes or crutches for walking outdoors. Subjects in the control group will receive conventional physiotherapy sessions at ADEMBI (Asociación de Esclerosis Múltiple de Bizkaia) provided to control spasticity, maintain articular range and exercise balance. Subjects in the intervention group will receive the same physiotherapy but also participate in a progressive OR gait training program assisted by the EksoTM exoskeleton. The program consists of twice a week individually supervised sessions in two setting modalities: PreGait and ProStepPlus. The training parameters (duration, speed, cadence, length of steps) will be set during the first session and the progression and intensity of the intervention will be adapted to the tolerance of each participant. The primary outcome of this study is gait speed. Secondary outcomes will include physical and cognitive performance tests, clinical, fatigue and quality of life assessments, and changes in the plasma levels of inflammatory cytokines. The present trial is the first analyzing the effectiveness of an OR intervention for gait training in patients with MS. It will help clarify the applicability of robotic technologies to clinical practice, extending the functionality and quality of life of people with MS to face a successful aging process. (ACTRN12619000014156; https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=376548).

12.
Front Cell Neurosci ; 14: 22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116565

RESUMEN

Microglia are the endogenous immune cells of the brain and act as sensor of infection and pathologic injury to the brain, leading to a rapid plastic process of activation that culminates in the endocytosis and phagocytosis of damaged tissue. Microglia cells are the most plastic cells in the brain. Microglia isolation from their environment as well as culturing them in the presence of serum alter their function and lead to a rapid loss of their signature gene expression. Previous studies have identified pivotal factors allowing microglia culture in the absence of serum. Here, we have further characterized the function, expression of markers, metabolic status and response to pro and anti-inflammatory stimulus of microglia isolated by magnetic-activated cell sorting and cultured in a chemically defined medium. We have compared this new method with previous traditional protocols of culturing microglia that use high concentrations of serum.

13.
Ann Neurol ; 87(5): 670-676, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32052483

RESUMEN

OBJECTIVE: Antibodies against neuronal N-methyl-D-aspartate receptors (NMDARs) in patients with anti-NMDAR encephalitis alter neuronal synaptic function and plasticity, but the effects on other cells of the nervous system are unknown. METHODS: Cerebrospinal fluid (CSF) of patients with anti-NMDAR encephalitis (preabsorbed or not with GluN1) and a human NMDAR-specific monoclonal antibody (SSM5) derived from plasma cells of a patient, along the corresponding controls, were used in the studies. To evaluate the activity of oligodendrocyte NMDARs and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in vitro after exposure to patients' CSF antibodies or SSM5, we used a functional assay based on cytosolic Ca2+ imaging. Expression of the glucose transporter (GLUT1) in oligodendrocytes was assessed by immunocytochemistry. RESULTS: NMDAR agonist responses were robustly reduced after preincubation of oligodendrocytes with patients' CSF or SSM5 but remained largely unaltered with the corresponding controls. These effects were NMDAR specific, as patients' CSF did not alter responses to AMPA receptor agonists and was abrogated by preabsorption of CSF with HEK cells expressing GluN1 subunit. Patients' CSF also reduced oligodendrocyte expression of glucose transporter GLUT1 induced by NMDAR activity. INTERPRETATION: Antibodies from patients with anti-NMDAR encephalitis specifically alter the function of NMDARs in oligodendrocytes, causing a decrease of expression of GLUT1. Considering that normal GLUT1 expression in oligodendrocytes and myelin is needed to metabolically support axonal function, the findings suggest a link between antibody-mediated dysfunction of NMDARs in oligodendrocytes and the white matter alterations reported in patients with this disorder. ANN NEUROL 2020;87:670-676.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/metabolismo , Autoanticuerpos/inmunología , Oligodendroglía/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adolescente , Adulto , Animales , Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Autoanticuerpos/líquido cefalorraquídeo , Autoanticuerpos/farmacología , Autoantígenos/inmunología , Células Cultivadas , Niño , Femenino , Transportador de Glucosa de Tipo 1/biosíntesis , Humanos , Masculino , Oligodendroglía/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/inmunología , Adulto Joven
14.
Curr Opin Pharmacol ; 47: 119-125, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31015145

RESUMEN

Multiple sclerosis (MS) is a chronic disease of the central nervous system characterized by massive infiltration of immune cells, demyelination, and axonal loss. However, spontaneous myelin repair can occur during the course of the disease. A major component of this regenerative process is a robust innate immune response consisting of infiltrating macrophages and brain microgliosis. Therefore, specifically targeting myeloid cells could be an attractive therapeutic approach. Purinergic receptors control not only immune cell function together with the activation of microglia and astrocytes, but also neuronal and oligodendroglial survival in the pathology. Thus, targeting these receptors can modulate a whole variety of responses. In this review, we will summarize recent findings highlighting the potential of P2X4 and P2X7 as therapeutic targets for MS.


Asunto(s)
Esclerosis Múltiple/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animales , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/etiología , Esclerosis Múltiple/patología
16.
EMBO Mol Med ; 10(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29973381

RESUMEN

Microglia survey the brain microenvironment for signals of injury or infection and are essential for the initiation and resolution of pathogen- or tissue damage-induced inflammation. Understanding the mechanism of microglia responses during pathology is hence vital to promote regenerative responses. Here, we analyzed the role of purinergic receptor P2X4 (P2X4R) in microglia/macrophages during autoimmune inflammation. Blockade of P2X4R signaling exacerbated clinical signs in the experimental autoimmune encephalomyelitis (EAE) model and also favored microglia activation to a pro-inflammatory phenotype and inhibited myelin phagocytosis. Moreover, P2X4R blockade in microglia halted oligodendrocyte differentiation in vitro and remyelination after lysolecithin-induced demyelination. Conversely, potentiation of P2X4R signaling by the allosteric modulator ivermectin (IVM) favored a switch in microglia to an anti-inflammatory phenotype, potentiated myelin phagocytosis, promoted the remyelination response, and ameliorated clinical signs of EAE Our results provide evidence that P2X4Rs modulate microglia/macrophage inflammatory responses and identify IVM as a potential candidate among currently used drugs to promote the repair of myelin damage.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Ivermectina/uso terapéutico , Microglía/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Remielinización/efectos de los fármacos , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Expresión Génica/efectos de los fármacos , Inflamación/genética , Inflamación/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Microglía/efectos de los fármacos , Vaina de Mielina/metabolismo , Oligodendroglía/fisiología , Fagocitosis , Antagonistas del Receptor Purinérgico P2X/farmacología , Ratas
17.
Ther Adv Neurol Disord ; 11: 1756286418774267, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29774059

RESUMEN

The inflammatory response is a major factor in stroke pathophysiology and contributes to secondary neuronal damage in both acute and chronic stages of the ischemic injury. Recent work in experimental cerebral ischemia has demonstrated the involvement of neurotransmitter signaling in the modulation of neuroinflammation. The present review discusses recent findings on the therapeutic potential and diagnostic perspectives of cholinergic, purinergic and glutamatergic receptors and transporters in experimental stroke. It provides evidence of the role of neurotransmission signaling as a promising inflammatory biomarker in stroke. Finally, recent molecular imaging studies using positron emission tomography of cholinergic receptors and glutamatergic transporters are outlined along with their potential as novel anti-inflammatory therapy to reduce the outcome of cerebral ischemia.

18.
Glia ; 66(8): 1611-1624, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29528142

RESUMEN

In vivo positron emission tomography (PET) imaging of nicotinic acetylcholine receptors (nAChRs) is a promising tool for the imaging evaluation of neurologic and neurodegenerative diseases. However, the role of α7 nAChRs after brain diseases such as cerebral ischemia and its involvement in inflammatory reaction is still largely unknown. In vivo and ex vivo evaluation of α7 nAChRs expression after transient middle cerebral artery occlusion (MCAO) was carried out using PET imaging with [11 C]NS14492 and immunohistochemistry (IHC). Pharmacological activation of α7 receptors was evaluated with magnetic resonance imaging (MRI), [18 F]DPA-714 PET, IHC, real time polymerase chain reaction (qPCR) and neurofunctional studies. In the ischemic territory, [11 C]NS14492 signal and IHC showed an expression increase of α7 receptors in microglia and astrocytes after cerebral ischemia. The role played by α7 receptors on neuroinflammation was supported by the decrease of [18 F]DPA-714 binding in ischemic rats treated with the α7 agonist PHA 568487 at day 7 after MCAO. Moreover, compared with non-treated MCAO rats, PHA-treated ischemic rats showed a significant reduction of the cerebral infarct volumes and an improvement of the neurologic outcome. PHA treatment significantly reduced the expression of leukocyte infiltration molecules in MCAO rats and in endothelial cells after in vitro ischemia. Despite that, the activation of α7 nAChR had no influence to the blood brain barrier (BBB) permeability measured by MRI. Taken together, these results suggest that the nicotinic α7 nAChRs play a key role in the inflammatory reaction and the leukocyte recruitment following cerebral ischemia in rats.


Asunto(s)
Astrocitos/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Receptores Nicotínicos/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/efectos de los fármacos , Animales , Astrocitos/metabolismo , Compuestos de Azabiciclo/farmacología , Isquemia Encefálica/metabolismo , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/inducido químicamente , Infarto de la Arteria Cerebral Media/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Oxadiazoles/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Ratas Sprague-Dawley
20.
Theranostics ; 6(11): 1753-67, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27570548

RESUMEN

In vivo Positron Emission Tomography (PET) imaging of the cystine-glutamate antiporter (system xc(-)) activity with [(18)F]FSPG is meant to be an attractive tool for the diagnosis and therapy evaluation of brain diseases. However, the role of system xc(-) in cerebral ischemia and its involvement in inflammatory reaction has been scarcely explored. In this work, we report the longitudinal investigation of the neuroinflammatory process following transient middle cerebral artery occlusion (MCAO) in rats using PET with [(18)F]FSPG and the translocator protein (TSPO) ligand [(18)F]DPA-714. In the ischemic territory, [(18)F]FSPG showed a progressive binding increase that peaked at days 3 to 7 and was followed by a progressive decrease from days 14 to 28 after reperfusion. In contrast, [(18)F]DPA-714 evidenced maximum binding uptake values over day 7 after reperfusion. Ex vivo immnunohistochemistry confirmed the up-regulation of system xc(-) in microglial cells and marginally in astrocytes. Inhibition of system xc(-) with sulfasalazine and S-4-CPG resulted in increased arginase (anti-inflammatory M2 marker) expression at day 7 after ischemia, together with a decrease in TSPO and microglial M1 proinflammatory markers (CCL2, TNF and iNOS) expression. Taken together, these results suggest that system xc(-) plays a key role in the inflammatory reaction underlying experimental stroke.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/análisis , Isquemia Encefálica/complicaciones , Isquemia Encefálica/diagnóstico por imagen , Encefalitis/diagnóstico por imagen , Glutamatos/administración & dosificación , Tomografía de Emisión de Positrones/métodos , Pirazoles/administración & dosificación , Pirimidinas/administración & dosificación , Animales , Astrocitos/enzimología , Astrocitos/fisiología , Modelos Animales de Enfermedad , Encefalitis/patología , Estudios Longitudinales , Microglía/enzimología , Microglía/fisiología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...